Abstract

Research Article

Viscosity-sensitive mitochondrial fluorescent probes and their bio-applications

Mengmeng Wei and Rui Yang*

Published: 26 August, 2022 | Volume 6 - Issue 1 | Pages: 038-042

As a vital index of the mitochondrial micro-environment, mitochondrial micro-viscosity plays a fundamental role in cell life activities. Normal mitochondrial viscosity is a necessary condition for the maintenance of normal life activities of mitochondria. Abnormal mitochondrial viscosity can lead to a series of mitochondria-related diseases. Therefore, it is essential to observe mitochondrial viscosity for physiological and pathological processes. Given the conventional viscosity measurement methods (viscometer, etc.) cannot monitor the changes in mitochondrial viscosity, the fluorescence method supplemented with the fluorescent probe is widely used to observe the changes in mitochondrial viscosity. In view of the booming development in this area, this review describes the applications of viscosity-responsive mitochondrial fluorescent probes in biological samples from the cellular and tissue levels. We hope that this review will deepen our understanding of mitochondrial viscosity and related fields, and promote the development of viscosity-sensitive mitochondrial probes and other organelle fluorescence probes.

Read Full Article HTML DOI: 10.29328/journal.aac.1001029 Cite this Article Read Full Article PDF

Keywords:

Mitochondria; Viscosity; Fluorescent probe; Biological imaging

References

  1. Lee SX, Lim HN, Ibrahim I, Jamil A, Pandikumar A, Huang NM. Horseradish peroxidase-labeled silver/reduced graphene oxide thin film-modified screen-printed electrode for detection of carcinoembryonic antigen. Biosens Bioelectron. 2017 Mar 15;89(Pt 1):673-680. doi: 10.1016/j.bios.2015.12.030. Epub 2015 Dec 15. PMID: 26718548.
  2. Baek Y, Park SJ, Zhou X, Kim G, Kim HM, Yoon J. A viscosity sensitive fluorescent dye for real-time monitoring of mitochondria transport in neurons. Biosens Bioelectron. 2016 Dec 15;86:885-891. doi: 10.1016/j.bios.2016.07.026. Epub 2016 Jul 9. PMID: 27494813.
  3. Zhang L, Guo R, Hu Q. A novel near-infrared probe with large Stokes shift for the detection of viscosity changes in living cells. Journal of Luminescence. 2021; 233: 117883.
  4. Yang R, He X, Niu G, Meng F, Lu Q, Liu Z, Yu X. A Single Fluorescent pH Probe for Simultaneous Two-Color Visualization of Nuclei and Mitochondria and Monitoring Cell Apoptosis. ACS Sens. 2021 Apr 23;6(4):1552-1559. doi: 10.1021/acssensors.0c02372. Epub 2021 Feb 3. PMID: 33533249.
  5. Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010 Sep;11(9):621-32. doi: 10.1038/nrm2952. Epub 2010 Aug 4. PMID: 20683470.
  6. Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 2019 Jul;44(1):3-15. doi: 10.3892/ijmm.2019.4188. Epub 2019 May 8. PMID: 31115493; PMCID: PMC6559295.
  7. Acin-Perez R, Enriquez JA. The function of the respiratory supercomplexes: the plasticity model. Biochimica et Biophysica Acta - General Subjects. 2014; 1837(4): 444-450.
  8. Ricchelli F, Gobbo S, Moreno G, Salet C. Changes of the fluidity of mitochondrial membranes induced by the permeability transition. Biochemistry. 1999 Jul 20;38(29):9295-300. doi: 10.1021/bi9900828. PMID: 10413503.
  9. Mecocci P, Cherubini A, Beal MF, Cecchetti R, Chionne F, Polidori MC, Romano G, Senin U. Altered mitochondrial membrane fluidity in AD brain. Neurosci Lett. 1996 Mar 29;207(2):129-32. doi: 10.1016/0304-3940(96)12509-x. PMID: 8731438.
  10. García JJ, Piñol-Ripoll G, Martínez-Ballarín E, Fuentes-Broto L, Miana-Mena FJ, Venegas C, Caballero B, Escames G, Coto-Montes A, Acuña-Castroviejo D. Melatonin reduces membrane rigidity and oxidative damage in the brain of SAMP8 mice. Neurobiol Aging. 2011 Nov;32(11):2045-54. doi: 10.1016/j.neurobiolaging.2009.12.013. Epub 2010 Jan 22. PMID: 20096480.
  11. Kuter K, Kratochwil M, Berghauzen-Maciejewska K, Głowacka U, Sugawa MD, Ossowska K, Dencher NA. Adaptation within mitochondrial oxidative phosphorylation supercomplexes and membrane viscosity during degeneration of dopaminergic neurons in an animal model of early Parkinson's disease. Biochim Biophys Acta. 2016 Apr;1862(4):741-753. doi: 10.1016/j.bbadis.2016.01.022. Epub 2016 Feb 1. PMID: 26844379.
  12. Eckmann J, Clemens LE, Eckert SH, Hagl S, Yu-Taeger L, Bordet T, Pruss RM, Muller WE, Leuner K, Nguyen HP, Eckert GP. Mitochondrial membrane fluidity is consistently increased in different models of Huntington disease: restorative effects of olesoxime. Mol Neurobiol. 2014 Aug;50(1):107-18. doi: 10.1007/s12035-014-8663-3. Epub 2014 Mar 18. PMID: 24633813.
  13. Berg RF, May EF, Moldovera MR. Viscosity ratio measurements with capillary viscometers. Journal of Chemical and Engineering Data. 2014; 59: 116–124.
  14. Casaretto C, Martínez Sarrasague M, Giuliano S, Rubin de Celis E, Gambarotta M, Carretero I, Miragaya M. Evaluation of Lama glama semen viscosity with a cone-plate rotational viscometer. Andrologia. 2012 May;44 Suppl 1:335-41. doi: 10.1111/j.1439-0272.2011.01186.x. Epub 2011 Jul 6. PMID: 21729143.
  15. Leclerc GE, Charleux F, Robert L, Ho Ba Tho MC, Rhein C, Latrive JP, Bensamoun SF. Analysis of liver viscosity behavior as a function of multifrequency magnetic resonance elastography (MMRE) postprocessing. J Magn Reson Imaging. 2013 Aug;38(2):422-8. doi: 10.1002/jmri.23986. Epub 2013 Jan 4. PMID: 23293060.
  16. Sinkus R, Tanter M, Catheline S, Lorenzen J, Kuhl C, Sondermann E, Fink M. Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn Reson Med. 2005 Feb;53(2):372-87. doi: 10.1002/mrm.20355. PMID: 15678538.
  17. Fu W, Yan C, Guo Z, Zhang J, Zhang H, Tian H, Zhu WH. Rational Design of Near-Infrared Aggregation-Induced-Emission-Active Probes: In Situ Mapping of Amyloid-β Plaques with Ultrasensitivity and High-Fidelity. J Am Chem Soc. 2019 Feb 20;141(7):3171-3177. doi: 10.1021/jacs.8b12820. Epub 2019 Jan 25. PMID: 30632737.
  18. Li H, Yao Q, Xu F, Li Y, Kim D, Chung J, Baek G, Wu X, Hillman PF, Lee EY, Ge H, Fan J, Wang J, Nam SJ, Peng X, Yoon J. An Activatable AIEgen Probe for High-Fidelity Monitoring of Overexpressed Tumor Enzyme Activity and Its Application to Surgical Tumor Excision. Angew Chem Int Ed Engl. 2020 Jun 15;59(25):10186-10195. doi: 10.1002/anie.202001675. Epub 2020 Mar 10. PMID: 32155310.
  19. Zhu X, Wang JX, Niu LY. Aggregation-induced emission materials with narrowed emission band by light-harvesting strategy: fluorescence and chemiluminescence imaging. Chemistry of Materials. 2019; 31 (9): 3573-3581.
  20. Jiménez-Sánchez A, Lei EK, Kelley SO. A Multifunctional Chemical Probe for the Measurement of Local Micropolarity and Microviscosity in Mitochondria. Angew Chem Int Ed Engl. 2018 Jul 16;57(29):8891-8895. doi: 10.1002/anie.201802796. Epub 2018 Jun 19. PMID: 29808513; PMCID: PMC6338234.
  21. Park SJ, Shin BK, Lee HW. Asymmetric cyanine as a far-red fluorescence probe for mitochondrial viscosity. Dyes and Pigments. 2020; 174: 108080.
  22. Sui B, Tang S, Woodward AW. A BODIPY‐based water‐soluble fluorescent probe for mitochondria targeting. European Journal of Organic Chemistry. 2016; 2016 (16): 2851-2857.
  23. Zhang G, Sun Y, He X, Zhang W, Tian M, Feng R, Zhang R, Li X, Guo L, Yu X, Zhang S. Red-Emitting Mitochondrial Probe with Ultrahigh Signal-to-Noise Ratio Enables High-Fidelity Fluorescent Images in Two-Photon Microscopy. Anal Chem. 2015 Dec 15;87(24):12088-95. doi: 10.1021/acs.analchem.5b02807. Epub 2015 Dec 3. PMID: 26585577.
  24. Sun W, Shi YD, Ding AX. Imaging viscosity and peroxynitrite by a mitochondria-targeting two-photon ratiometric fluorescent probe. Sensors and Actuators B: Chemical. 2018; 276: 238-246.
  25. Ren M, Deng B, Zhou K. Single fluorescent probe for dual-imaging viscosity and H2O2 in mitochondria with different fluorescence signals in living cells. Analytical Chemistry. 2017; 89 (1): 552-555.
  26. Li SJ, Li YF, Liu HW, Zhou DY, Jiang WL, Ou-Yang J, Li CY. A Dual-Response Fluorescent Probe for the Detection of Viscosity and H2S and Its Application in Studying Their Cross-Talk Influence in Mitochondria. Anal Chem. 2018 Aug 7;90(15):9418-9425. doi: 10.1021/acs.analchem.8b02068. Epub 2018 Jul 13. PMID: 29973044.
  27. Guo L, Zhang R, Sun Y, Tian M, Zhang G, Feng R, Li X, Yu X, He X. Styrylpyridine salts-based red emissive two-photon turn-on probe for imaging the plasma membrane in living cells and tissues. Analyst. 2016 May 23;141(11):3228-32. doi: 10.1039/c6an00147e. PMID: 27160329.
  28. Guo R , Yin J , Ma Y , Wang Q , Lin W . A novel mitochondria-targeted rhodamine analogue for the detection of viscosity changes in living cells, zebra fish and living mice. J Mater Chem B. 2018 May 14;6(18):2894-2900. doi: 10.1039/c8tb00298c. Epub 2018 Apr 25. PMID: 32254242.
  29. Chen B, Mao S, Sun Y, Sun L, Ding N, Li C, Zhou J. A mitochondria-targeted near-infrared fluorescent probe for imaging viscosity in living cells and a diabetic mice model. Chem Commun (Camb). 2021 May 4;57(36):4376-4379. doi: 10.1039/d1cc01104a. PMID: 33949482.
  30. Fang Z, Su Z, Qin W. Two-photon dual-channel fluorogenic probe for in situ imaging the mitochondrial H2S/viscosity in the brain of drosophila Parkinson’s disease model. Chinese Chemical Letters. 2020; 31(11): 2903-2908.
  31. Dai L, Ren M, Lin W. Development of a novel NIR viscosity fluorescent probe for visualizing the kidneys in diabetic mice. Spectrochim Acta A Mol Biomol Spectrosc. 2021 Jun 5;254:119627. doi: 10.1016/j.saa.2021.119627. Epub 2021 Feb 26. PMID: 33714915.
  32. Zhang Y, Li Z, Hu W. A mitochondrial-targeting near-infrared fluorescent probe for visualizing and monitoring viscosity in live cells and tissues. Analytical Chemistry. 2019; 91(15): 10302-10309.

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?